英文专利翻译范文格式是怎么样的?

  • 英文专利翻译范文格式是怎么样的?已关闭评论

专利对于一个公司企业和个人起到非常重要的作用,因为它直接影响到利益及今后的发展趋势。所以,作为一名议员需要更佳精细化将专利的词汇翻译标准,上海鑫美译翻译有限公司查找了一篇英文专利翻译范文格式范文,仅供参考学习交流。

英文专利翻译范文格式是怎么样的?

[1] W.-W. Liu, X.-B. Yan, J.-W. Lang, et al. Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor[J]. Journal of Materials Chemistry, 2012, 22(33): 17245-17253.

[2] B. G. Choi, S.-J. Chang, H.-W. Kang, et al. High performance of a solid-state flexible asymmetric supercapacitor based on graphene films[J]. Nanoscale, 2012, 4(16): 4983-4988.

[3] L. Yuan, X.-H. Lu, X. Xiao, et al. Flexible solid-state supercapacitors based on carbon nanoparticles/mno2 nanorods hybrid structure[J]. Acs Nano, 2011, 6(1): 656-661.

[4] Q. Liu, M. H. Nayfeh,S.-T. Yau. Brushed-on flexible supercapacitor sheets using a nanocomposite of polyaniline and carbon nanotubes[J]. Journal of Power Sources, 2010, 195(21): 7480-7483.

[5] Z. Niu, J. Du, X. Cao, et al. Electrophoretic build-up of alternately multilayered films and micropatterns based on graphene sheets and nanoparticles and their applications in flexible supercapacitors[J]. Small, 2012: n/a-n/a.

[6] Y. J. Kang, S.-J. Chun, S.-S. Lee, et al. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer-ion gels[J]. Acs Nano, 2012.

[7] L. Bao, J. Zang,X. Li. Flexible zn2sno4/mno2 core/shell nanocable?carbon microfiber hybrid composites for high-performance supercapacitor electrodes[J]. Nano Letters, 2011, 11(3): 1215-1220.

[8] B. G. Choi, J. Hong, W. H. Hong, et al. Facilitated ion transport in all-solid-state flexible supercapacitors[J]. Acs Nano, 2011, 5(9): 7205-7213.

[9] X. Dong, L. Wang, D. Wang, et al. Layer-by-layer engineered co–al hydroxide nanosheets/graphene multilayer films as flexible electrode for supercapacitor[J]. Langmuir, 2011, 28(1): 293-298.

[10] S.-L. Chou, J.-Z. Wang, S.-Y. Chew, et al. Electrodeposition of mno2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors[J]. Electrochemistry Communications, 2008, 10(11): 1724-1727.

[11] Y. Gao, V. Presser, L. Zhang, et al. High power supercapacitor electrodes based on flexible tic-cdc nano-felts[J]. Journal of Power Sources, 2012, 201(0): 368-375.

[12] M. Rouvala,T. Von Rauner. Apparatus i.E. Supercapacitor, for use in flexible printed circuit structure of e.G. Personal digital assistant, has rigid-flex circuit board comprising rigid regions physically and electrically connected to each other by flexible region. US2012025787-A1; WO2012013855-A1 [P].

[13] Y. An, T. Jiang, X. Mi, et al. Electrode for flexible solid supercapacitor, comprises active substance, conductive agent and adhesive in specific ratio, where outer layer of active substance is coated with ion/electron polymer film. CN102324317-A [P].

[14] C. Masarapu, L.-P. Wang, X. Li, et al. 柔性超级电容器 tailoring electrode/electrolyte interfacial properties in flexible supercapacitors by applying pressure[J]. Advanced Energy Materials, 2012, 2(5): 546-552.

[15] X. Lu, H. Dou, C. Yuan, et al. Polypyrrole/carbon nanotube nanocomposite enhanced the electrochemical capacitance of flexible graphene film for supercapacitors[J]. Journal of Power Sources, 2011.

[16] M. Xue, Z. Xie, L. Zhang, et al. Microfluidic etching for fabrication of flexible and all-solid-state micro supercapacitor based on mno2 nanoparticles[J]. Nanoscale, 2011, 3(7): 2703-2708.

[17] K. Wang, P. Zhao, X. Zhou, et al. Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/swcnt composites[J]. Journal of Materials Chemistry, 2011, 21(41): 16373-16378.

[18] J. Ge, G. Cheng,L. Chen. Transparent and flexible electrodes and supercapacitors using polyaniline/single-walled carbon nanotube composite thin films[J]. Nanoscale, 2011, 3(8): 3084-3088.

[19] X. Yan, Z. Tai, J. Chen, et al. Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor[J]. Nanoscale, 2011, 3(1): 212-216.

[20] K. Wang, W. Zou, B. Quan, et al. An all-solid-state flexible micro-supercapacitor on a chip[J]. Advanced Energy Materials, 2011, 1(6): 1068-1072.

[21] C. Meng, C. Liu, L. Chen, et al. Highly flexible and all-solid-state paperlike polymer supercapacitors[J]. Nano Letters, 2010, 10(10): 4025-4031.

[22] X. Lu, T. Zhai, X. Zhang, et al. Wo3–x@au@mno2 core–shell nanowires on carbon fabric for high-performance flexible supercapacitors[J]. Advanced Materials, 2012, 24(7): 938-944.

[23] Z. Weng, Y. Su, D.-W. Wang, et al. Graphene–cellulose paper flexible supercapacitors[J]. Advanced Energy Materials, 2011, 1(5): 917-922.

[24] M. C. K. Sellers, N. P. Zussblatt,C. P. Marsh. Potassium perruthenate-treated carbon nanotube sheets for flexible supercapacitors[J]. Electrochemistry Communications, 2012, 18(0): 58-61.

[25] G. Wang, X. Sun, F. Lu, et al. Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors[J]. Small, 2012, 8(3): 452-459.

[26] M. Jin, G. Han, Y. Chang, et al. Flexible electrodes based on polypyrrole/manganese dioxide/polypropylene fibrous membrane composite for supercapacitor[J]. Electrochimica Acta, 2011, 56(27): 9838-9845.

[27] X. Lu, H. Dou, B. Gao, et al. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors[J]. Electrochimica Acta, 2011, 56(14): 5115-5121.

[28] Q. Wu, Y. Xu, Z. Yao, et al. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films[J]. Acs Nano, 2010, 4(4): 1963-1970.

[29] A. Davies, P. Audette, B. Farrow, et al. Graphene-based flexible supercapacitors: Pulse-electropolymerization of polypyrrole on free-standing graphene films[J]. The Journal of Physical Chemistry C, 2011, 115(35): 17612-17620.

[30] S. D. Perera, B. Patel, N. Nijem, et al. Vanadium oxide nanowire–carbon nanotube binder-free flexible electrodes for supercapacitors[J]. Advanced Energy Materials, 2011, 1(5): 936-945.

[31] Z. Li, Y. Mi, X. Liu, et al. Flexible graphene/mno2 composite papers for supercapacitor electrodes[J]. Journal of Materials Chemistry, 2011, 21(38): 14706-14711.

[32] Y.-Y. Horng, Y.-C. Lu, Y.-K. Hsu, et al. Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance[J]. Journal of Power Sources, 2010, 195(13): 4418-4422.

[33] J. Bae, M. K. Song, Y. J. Park, et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage[J]. Angewandte Chemie International Edition, 2011, 50(7): 1683-1687.

专利列表(部分由PDF资料)

[1] E. R. Buiel, V. Eshkenazi, L. Rabinovich, et al. Hybrid lead-carbon-acid supercapacitor energy storage device e.G. Battery, has carbon electrode having conductive material and electroconductive shield material to which activated carbon electrode is adhered using binder material. US2008100990-A1; WO2008057765-A2; WO2008057765-A3; US7881042-B2 [P].

[2] G. Gruner, I. Oconnor,I. O'connor. Supercapacitor electrode, e.G. For hybrid electric vehicles comprises electrochemical supercapacitor material, highly-structured double layer supercapacitor material, and less-structured double layer supercapacitor material. US2011255214-A1 [P].

[3] E. Gerber. Hybrid lead acid supercapacitor battery energy storage device has titanium core positive electrodes in which each cores has expanded metal component portion and flash electroplated coating layer, and negative carbon electrode assembly. US2012003509-A1 [P].

[4] H. Zheng, O. Wei, Y. Huang, et al. Fabrication of an electrode for supercapacitor applications by using sol-gel process. US6168694-B1 [P].

[5] C. Andersson,M. Jorgensen. Communication device e.G. Cellular phone, has antenna provided into array for communicating message received from transmitter, and crank powering supercapacitor that stores charge generated by movement of crank. US2010056048-A1 [P].

[6] P. Mitchell, X. Xi,L. Zhong. Energy storage device product e.G. Supercapacitor, for powering vehicle's engine, has dry adhesive adhered on current collector, and electrode film adhered on collector by dried adhesive. US2011299219-A1 [P].

[7] C. Peng, S. Zhang, X. Zhou, et al. Charge storage device e.G. Asymmetrical supercapacitor, has pair of electrodes that stores electric charge and has respective capacitances that are different from each other, where ratio of capacitances is formed to be greater than unity. WO2012020393-A2 [P].

[8] I. D. Kim, Y. Song,T. S. Hyun. Composite electrode active material, useful for fabricating a supercapacitor, comprises ruthenium oxide complex. US2012063058-A1 [P].

[9] J. H. Bae, B. K. Kim,C. R. Jung. Use of carboxymethyl cellulose (having specific viscosity) in slurry composition for manufacturing an electrode for an energy storage device including rechargeable battery and supercapacitor. US2011303881-A1; JP2011256358-A [P].

[10] L. Zheng, H. Yang, W. Cai, et al. Bipolar electrode useful in a supercapacitor desalination device, comprises an intermediate layer comprising carbon materials, first and second layers, cation and anion selective materials, reinforcement layers, and adhesive layers. US2011024287-A1; WO2011016903-A1; WO2011016903-A8 [P].

[11] O. Ryul Kim, O. Min Kim, G. Sik Lee, et al. Supercapacitor, has separation film comprising electrode layer coated with carbon nanotube powder, conductive substrate formed at side of separation film, and insulating plate arranged at upper side of insulator box. KR2011000100-A; KR1057410-B1 [P].

[12] M. Rouvala,T. Von Rauner. Apparatus i.E. Supercapacitor, for use in flexible printed circuit structure of e.G. Personal digital assistant, has rigid-flex circuit board comprising rigid regions physically and electrically connected to each other by flexible region. US2012025787-A1; WO2012013855-A1 [P].

[13] K. C. Roh, S. M. Park, J. W. Lee, et al. Producing graphene electrode used for supercapacitor, involves forming graphene mixture by mixing e.G. Graphene powder, conductive materials, molasse and dispersing medium, sintering mixture, and press-molding mixture. KR2011058223-A; KR1079317-B1 [P].

[14] V. Obreja. Invention relates to process for manufacturing supercapacitor and thus obtained supercapacitor. RO125941-A2 [P].

[15] P. B. Karandikar,D. B. Talange. Method of manufacturing electrode for supercapacitor. IN201002858-I3 [P].

[16] C. Chang,C. Wei. Thermal management multi-layer film/sheet and hollow articles for the use with secondary battery, supercapacitor and battery pack comprises a laminate of a set of alternating metal, plastic, and adhesive layers. TW201101557-A [P].

[17] C. N. Song H, C. N. Chen X,C. N. Zhao S. Manufacturing graphene nanosheets useful for supercapacitor, involves adding graphite to mixed liquid, adding potassium chlorate to obtained mixture, mixing expanded graphite and grinding pebble and ball milling mixture. CN101870466-A [P].

[18] L. Shiue,M. Goto. Multi electrode bipolar element for use in bipolar supercapacitor, has separator arranged between two electrodes for stacking electrode and separator into prismatic form, where biplor element is partially sealed. WO2008130042-A2; WO2008130042-A3; WO2008130042-A4; JP2010524200-W; US2010302708-A1 [P].

[19] C. N. Li B, C. N. Ling F, C. N. She P, et al. Adhesive agent used for electrode slurry for electrode sheet for supercapacitor, contains mixture of adhesive agent(s) having molecular weight less than specific value and adhesive agent(s) having molecular weight more than specific value. CN101760154-A [P].

[20] W. Gan, H. Liu, J. Liu, et al. Dc differential pulse combined electrodepositing method for preparing ruthenium oxide electrode material of supercapacitor, involves depositing an electrodepositing liquid on substrate with predetermined differential pulse current. CN101525760-A; CN101525760-B [P].

[21] W. Gan, H. Liu, J. Liu, et al. Thermal coating decomposition for preparing ruthenium oxide electrode material of supercapacitor involves carrying out thermal treatment on coated or drawn film and insulating at specified conditions. CN101567269-A; CN101567269-B [P].

[22] L. Shiue, L. Li, H. Chung, et al. Manufacture cylindrical high voltage supercapacitor as energy-storage device, by interposing bipolar electrode(s) between anode and cathode. US6579327-B1 [P].

[23] V. Refko, E. Shembel, V. Khandetskyy, et al. Service life determination apparatus for ultrasonic and electromagnetic testing of electrochemical energy device e.G. Supercapacitor has polyurethane tip glued to ultrasonic probes to match acoustic resistance of probes with test object. US2008028860-A1; US7845232-B2 [P].

[24] J. Dai, S. M. Lipka, J. R. Miller, et al. Asymmetric supercapacitor comprises positive electrode comprising current collector and primary active material, negative electrode containing carbonaceous active material, solid electrolyte and separator plate. US2009290287-A1; CN101989499-A; US8107223-B2 [P].

[25] C. N. Chen S, C. N. Ruan D,C. N. Chen Z. Adhesive used for manufacturing electrode used in supercapacitor, comprises polyvinylpyrrolidone, polytetrafluoroethylene and sodium carboxymethyl cellulose. CN101845281-A [P].

[26] Y. An, T. Jiang, X. Mi, et al. Electrode for flexible solid supercapacitor, comprises active substance, conductive agent and adhesive in specific ratio, where outer layer of active substance is coated with ion/electron polymer film. CN102324317-A.

weinxin
微信扫一扫
鑫美译翻译公司是一家具有多年行业经验,专注笔译、口译、网站翻译、及翻译培训等翻译服务的大型翻译公司。翻译服务热线:400-668-0534。
靠谱的翻译公司的介绍以及业务范围 翻译知识技巧

靠谱的翻译公司的介绍以及业务范围

为了现代商业更好的发展,企业常常会考虑进行跨国贸易。这个时候雇佣翻译公司尤为重要。雇佣翻译公司有哪些需要了解的知识呢?翻译公司在处理业务的时候有哪些需要注意的呢?下面咱们就一起来看看吧!以下关于“靠谱...
西班牙语翻译涉及的领域及其相关知识的说明 翻译知识技巧

西班牙语翻译涉及的领域及其相关知识的说明

随着时代不断的进展,很多企业都需要和国外企业进行交流或者合作,而企业在交谈的过程中,必备一位翻译是有必要的,而我们今天要了解的就是与翻译有关的知识,它就是西班牙语翻译的知识,下面就和小编一起看看吧。以...
合同翻译的注意要点及有关知识介绍 翻译知识技巧

合同翻译的注意要点及有关知识介绍

我们都知道签订合同一定要小心谨慎,不然你可能会在合同里吃大亏,因此,我们需要对合同进行翻译,解释清楚合同里的条款、章程。那么大家知道合同翻译的禁忌有哪些吗?下面小编将会为您详细介绍。以下关于“合同翻译...
合同翻译人员需要具备哪些素养?才能提升翻译质量 翻译知识技巧

合同翻译人员需要具备哪些素养?才能提升翻译质量

质量度在合同翻译中非常重要,不管口译还是笔译,在国际贸易迅速发展的几天,从业的译员需要时刻做好每一个细节点。持续性五六年下来经验会随之增加,翻译出的质量度大大得到保障,且收入也会得到大幅度提升。 合同...